Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Diaquabis(L-serinato)copper(II) 0.1-hydrate at 120 K

Otavio Versiane,^a Judith Felcman,^a Jussara Lopes de Miranda,^b R. Alan Howie^c and Janet M. S. Skakle^c*

^aDepartamento de Química, Pontificia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, 22453-999 Rio de Janeiro, RJ, Brazil, ^bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, and ^cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: j.skakle@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ Disorder in solvent or counterion R factor = 0.019 wR factor = 0.052 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $[Cu(C_3H_6NO_3)_2(H_2O)_2]\cdot 0.1H_2O$, is isostructural with the nickel analogue. The octahedral Cu^{II} ion lies on a twofold axis, with *cis* chelating *O,N*-serine groups and *trans* aqua ligands. Small amounts of a solvent water molecule form hydrogen bonds to link the molecules along the [010] direction, while a number of strong hydrogen bonds combine to form sheets in the (110) plane.

Received 26 October 2005 Accepted 27 October 2005 Online 5 November 2005

Comment

As part of our continuing study of Cu complexes with amino acids (Felcman & de Miranda, 1997; de Miranda & Felcman, 2001; de Miranda $et\ al.$, 2002; Felcman $et\ al.$, 2003), we have isolated and characterized the diaquabis(L-serinato)-copper(II) complex, (1), from an aqueous reaction mixture containing (L)-serine (ser), guanidinoacetic acid (gaa) and Cu^{II} (1:1:1). Crystals of (1) were obtained after several months. No crystalline complex containing gaa, either alone or in a mixed complex with ser, appeared in a similar time. van der Helm & Franks (1969) reported the structure of the unhydrated complex, [bis(L-serinato)copper(II)], (2), obtained from Cu^{II} and (L)-serine in methanol containing a little water.

Complex (1), isostructural with the analogous nickel complex, diaquabis(L-serinato)nickel(II) hydrate, (3), (van der Helm & Hossain, 1969), has an octahedrally coordinated Cu^{II} ion with cis chelating O,N-ser groups and trans aqua ligands (Fig. 1). A similar cis arrangement of ser units arises in square-pyramidal (2), in which a carboxylate O atom, from an adjacent molecule, occupies the apical position. A distant O atom is sited 3.632 (6) Å from Cu trans to the apical ligand in (2), but this can at most be considered only a very weak interaction. Comparison of the serine-Cu bond lengths in (2) [Cu-O 1.952 (5) and 1.970 (5) Å; Cu-N 1.975 (6) and 1.988 (6) A and in (1) (Table 1) indicates that the weaker interactions occur in the higher coordinate complex, (1). The serine chelate rings in (1) have envelope conformations with flaps at the N atoms. The Cu^{II} ion and the four serine binding atoms are essentially co-planar.

Small amounts of additional water molecules are present in both (1) and (3). The space group and structure of (1) are notably different from those of the unhydrated compound, (2), and although only a very small amount of water was found

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

to be present in (1), both the hydrogen-bonding scheme (see below) and the availability of space (PLATON: Spek, 2003) confirm its presence.

The non-isolation of any gaa-containing complex from the reaction mixture probably reflects more their solubility in the reaction media than their non-formation. A number of Cugaa complexes have been isolated, including tetrakis(µguanidinoacetic acid- $\kappa^2 O:O'$)bis[nitrato- κO)copper], [Cu₂- $(NO_3)_2(gaa)_4$, (4) (de Miranda et al., 2002), {aqua[μ -(N'carboxylatomethylguanidino)oxidoacetato](\(\mu\)-guanidinoacetic acid)dicopper(II)} nitrate dihydrate, [Cu₂(oag)(gaa)-(H₂O)]NO₃·2H₂O, (5) (Felcman *et al.*, 2003), and [CuCl₂(gaa)₂] (Silva et al., 2001]. Compounds (4) and (5) were obtained from reaction mixtures containing gaa and Cu^{II}, both in the presence and absence of another amino acid, namely aspartine. Furthermore, mixed Cu-L-serine complexes, e.g. with glycine, have been reported (D'yakon et al., 1991).

The solvent water molecule forms hydrogen bonds (Table 2) with the O atom of the aqua ligand in the main molecule (Fig. 2), leading to chains along [010]. Together with the other strong hydrogen bonds (Table 2), these form sheets in the (110) plane (Fig. 2).

Experimental

To a hot solution (333 K) of guanidinoacetic acid (0.3513 g, 3 mmol) and serine (0.3153, 3 mmol) in deionized water (100 ml) was slowly added a solution of copper(II) nitrate (0.7248 g, 3 mmol) in deionized water (5 ml). The reaction mixture was stirred at 333 K for 8 h, cooled slowly to 277 K, and the pH adjusted to 6.0 with KOH (3 M). The white precipitate which formed was filtered off and the filtrate was stored in a covered vessel. Thin blue plate-like crystals began to be formed after the fifth month and were collected after six months, washed with absolute ethanol and dried at 323 K.

Crystal data

$[Cu(C_3H_6NO_3)_2(H_2O)_2]\cdot 0.1H_2O$	$D_x = 1.837 \text{ Mg m}^{-3}$
$M_r = 309.55$	Mo $K\alpha$ radiation
Monoclinic, C2	Cell parameters from 673
a = 7.5866 (2) Å	reflections
b = 8.5684 (2) Å	$\theta = 2.9 - 27.5^{\circ}$
c = 8.8257 (2) Å	$\mu = 1.99 \text{ mm}^{-1}$
$\beta = 102.7701 \ (15)^{\circ}$	T = 120 (2) K
$V = 559.52 (2) \text{ Å}^3$	Plate, pale blue
Z = 2	$0.40 \times 0.30 \times 0.08 \text{ mm}$

Data collection

Bruker Nonius KappaCCD area-1220 independent reflections 1214 reflections with $I > 2\sigma(I)$ detector diffractometer $R_{\rm int} = 0.026$ φ and ω scans $\theta_{\rm max} = 27.5^{\circ}$ Absorption correction: multi-scan $h = -7 \rightarrow 9$ (SADABS; Sheldrick, 2003) $k = -10 \rightarrow 11$ $T_{\min} = 0.666, T_{\max} = 0.853$ 3347 measured reflections $l = -11 \rightarrow 10$

Refinement

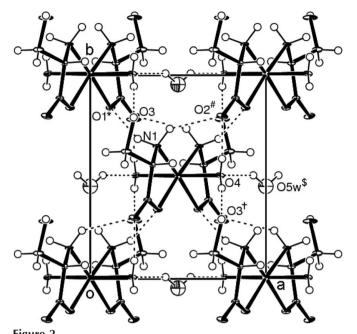
Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0104P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.019$ + 0.5389P] $wR(F^2) = 0.053$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.10 $\Delta \rho_{\text{max}} = 0.29 \text{ e Å}^{-3}$ 1220 reflections $\Delta \rho_{\rm min} = -0.44~{\rm e}~{\rm \mathring{A}}^{-3}$ 81 parameters H-atom parameters constrained Absolute structure: Flack (1983), with 536 Friedel pairs

Figure 1 The molecular structure of (1), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as open circles. [Symmetry code: (i) 1 - x, y, -z.]

Table 1 Selected geometric parameters (Å, °).

Cu1-O1	2.032 (2)	Cu1-O4	2.1044 (11)
Cu1-N1	2.079 (2)		
$O1-Cu1-O1^{i}$	91.50 (11)	$O1-Cu1-O4^{i}$	87.95 (8)
$O1-Cu1-N1^{i}$	172.11 (9)	$N1-Cu1-O4^{i}$	89.99 (8)
O1-Cu1-N1	81.16 (7)	N1-Cu1-O4	89.49 (8)
N1-Cu1-N1 ⁱ	106.31 (13)	O4-Cu1-O4 ⁱ	179.14 (14)
O1-Cu1-O4	92.65 (8)		

Symmetry code: (i) -x + 1, y, -z.


Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
N1-H1A···O2 ⁱⁱ	0.92	2.39	3.154 (3)	141
$N1-H1B\cdots O1^{iii}$	0.92	2.25	3.071(2)	149
$O3-H3\cdots O2^{iv}$	0.84	1.84	2.671 (2)	172
$O4-H4A\cdots O3^{v}$	0.82	1.90	2.701(3)	168
$O4-H4B\cdots O2^{ii}$	0.81	1.94	2.747 (3)	177
$O5W-H5\cdots O4^{vi}$	0.82	2.18	2.807 (4)	134

Symmetry codes: (ii) $x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z; (iv) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, -z + 1; (v) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (vi) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, -z.

Systematic absences permitted C2, Cm and C2/m as possible space groups; C2 was selected and confirmed by the subsequent structure analysis. In this space group, atoms Cu1 and O5W of the low-occupancy solvent water molecule (see below) lie on crystallographic twofold axes. Therefore, the asymmetric unit comprises, in addition to these two atoms, one of each of a complete serinate and aqua ligand and a single H atom of the solvent water molecule. The small amount of solvent water was clearly identified from the difference map. During the structure solution, and prior to the location of the water molecule, the difference map revealed two electron-density peaks close to one another, which suggested disorder of the water over two sites. However, the two positions could not be refined simultaneously and indeed, once one O atom was refined, the peak in the difference map corresponding to the 'second site' disappeared. Approximate positions for the H atoms of the aqua ligand and of the low-occupancy solvent water molecule were then obtained from difference maps and modified to provide acceptable O-H distances (0.81-0.82 Å) and H-O-H angles (103°). Owing to correlation with the isotropic displacement parameter, the occupancy of the solvent water

Flack parameter: 0.071 (12)

Part of the crystal structure of (1), showing the formation of sheets in the (110) plane built from N-H···O and O-H···O hydrogen bonds (dashed lines). Atoms labelled with a hash (#), asterisk (*) or plus sign (+) are at the symmetry positions $(\frac{1}{2} + x, \frac{1}{2} + y, z)$, $(\frac{1}{2} - x, \frac{1}{2} + y, -z)$ and $(\frac{1}{2} + x, -\frac{1}{2} + y, z)$, respectively. The solvent water molecule is linked to the main molecule by the symmetry operation $(\frac{3}{2} - x, \frac{1}{2} + y, -z)$. The O3-H3···O2^{iv} hydrogen bond is not visible in this orientation but forms

behind atom O3.

molecule could only be established by trial and error. The value of 0.10 finally chosen was such as to provide a reasonable value for the freely refined isotropic displacement parameter of the O atom (O5W). All other H atoms were placed in calculated positions, with X-H distances of 0.99 (CH₂), 1.00 (aliphatic CH), 0.92 (NH₂) or 0.84 Å (OH). The torsion angle of the OH group was also refined. All H atoms were refined, finally, with a riding model, with $U_{\rm iso}(H) = 1.2 U_{\rm eq}(C,N)$ or $1.5 U_{\rm eq}(O)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *OSCAIL-X* (McArdle, 1994, 2005) and *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *OSCAIL-X* and *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *CIFTAB* (Sheldrick, 1997).

The authors thank CNPq and FAPERJ, Brazil, for support, and the EPSRC X-ray Crystallographic Service, University of Southampton, UK, for the data collection. In addition, we acknowledge the help and advice of J. L. Wardell.

References

D'yakon, I. A., Donu, S. V., Chapurina, L. F. & Avilov, A. S. (1991). Kristallografiya, 31, 219–221.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-565.

Felcman, J., Howie, R. A., Miranda, J. L. de, Skakle, J. M. S. & Wardell, J. L. (2003). *Acta Cryst.* C59, m103-m106.

Felcman, J. & Miranda, J. L. de (1997). J. Braz. Chem. Soc. 8, 575-580.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Helm, D. van der & Franks, W. A. (1969). Acta Cryst. B25, 451-457.

Helm, D. van der & Hossain, M. B. (1969). Acta Cryst. B25, 457-463.

McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.

McArdle, P. (2005). OSCAIL-X for Windows. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.

Miranda, J. L. de & Felcman, J. (2001). Synth. React. Inorg. Met. Chem. 31, 873–894.

Miranda, J. L. de, Felcman, J., Wardell, J. L. & Skakle, J. M. S. (2002). Acta Cryst. C58, m471-m474.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.

Sheldrick, G. M. (1997). SHELXL97 and CIFTAB. University of Göttingen, Germany.

Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.

Silva, M. R., Paixão, J. A., Beja, A. M. & Veiga, L. A. (2001). *Acta Cryst.* C57, 7–8

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.